auxiliary graph - significado y definición. Qué es auxiliary graph
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es auxiliary graph - definición

GRAPH
Turan graph; Cocktail party graph; Octahedral Graph; Octahedral graph
  • The [[octahedron]], a 3-[[cross polytope]] whose edges and vertices form ''K''<sub>2,2,2</sub>, a Turán graph ''T''(6,3). Unconnected vertices are given the same color in this face-centered projection.

Null graph         
GRAPH WITHOUT EDGES (ON ANY NUMBER OF VERTICES)
Empty tree; Empty graph; Null Graph; Null tree; Singleton graph; Edgeless graph; Order-zero graph
In the mathematical field of graph theory, the term "null graph" may refer either to the order-zero graph, or alternatively, to any edgeless graph (the latter is sometimes called an "empty graph").
Turán graph         
The Turán graph, denoted by T(n,r), is a complete multipartite graph; it is formed by partitioning a set of n vertices into r subsets, with sizes as equal as possible, and then connecting two vertices by an edge if and only if they belong to different subsets. Where q and s are the quotient and remainder of dividing n by r (so n = qr + s), the graph is of the form K_{q+1, q+1, \ldots, q, q}, and the number of edges is
Dense graph         
GRAPH IN WHICH THE NUMBER OF EDGES IS CLOSE TO THE MAXIMUM FOR ITS NUMBER OF VERTICES
Sparse graph; Graph density; Density (graph theory)
In mathematics, a dense graph is a graph in which the number of edges is close to the maximal number of edges (where every pair of vertices is connected by one edge). The opposite, a graph with only a few edges, is a sparse graph.

Wikipedia

Turán graph

The Turán graph, denoted by T ( n , r ) {\displaystyle T(n,r)} , is a complete multipartite graph; it is formed by partitioning a set of n {\displaystyle n} vertices into r {\displaystyle r} subsets, with sizes as equal as possible, and then connecting two vertices by an edge if and only if they belong to different subsets. Where q {\displaystyle q} and s {\displaystyle s} are the quotient and remainder of dividing n {\displaystyle n} by r {\displaystyle r} (so n = q r + s {\displaystyle n=qr+s} ), the graph is of the form K q + 1 , q + 1 , , q , q {\displaystyle K_{q+1,q+1,\ldots ,q,q}} , and the number of edges is

( 1 1 r ) n 2 s 2 2 + ( s 2 ) {\displaystyle \left(1-{\frac {1}{r}}\right){\frac {n^{2}-s^{2}}{2}}+{s \choose 2}} .

The graph has s {\displaystyle s} subsets of size q + 1 {\displaystyle q+1} , and r s {\displaystyle r-s} subsets of size q {\displaystyle q} ; each vertex has degree n q 1 {\displaystyle n-q-1} or n q {\displaystyle n-q} . It is a regular graph if n {\displaystyle n} is divisible by r {\displaystyle r} (i.e. when s = 0 {\displaystyle s=0} ).